Inhibition evoked from primary afferents in the electrosensory lateral line lobe of the weakly electric fish (Apteronotus leptorhynchus).

نویسندگان

  • N J Berman
  • L Maler
چکیده

Inhibition evoked from primary afferents in the electrosensory lateral line lobe of the weakly electric fish (Apteronotus leptorhynchus). J. Neurophysiol. 80: 3173-3196, 1998. The responses of two types of projection neurons of the electrosensory lateral line lobe, basilar (BP) and nonbasilar (NBP) pyramidal cells, to stimulation of primary electrosensory afferents were determined in the weakly electric fish, Apteronotus leptorhynchus. Using dyes to identify cell type, the response of NBP cells to stimulation of primary afferents was inhibitory, whereas the response of BP cells was excitation followed by inhibition. gamma-Aminobutyric acid (GABA) applications produced biphasic (depolarization then hyperpolarization) responses in most cells. GABAA antagonists blocked the depolarizing effect of GABA and reduced the hyperpolarizing effect. The GABAB antagonists weakly antagonized the hyperpolarizing effect. The early depolarization had a larger increase in cell conductance than the late hyperpolarization. The conductance changes were voltage dependent, increasing with depolarization. In both cell types, baclofen produced a slow small hyperpolarization and reduced the inhibitory postsynaptic potentials (IPSPs) evoked by primary afferent stimulation. Tetanic stimulation of primary afferents at physiological rates (100-200 Hz) produced strongly summating compound IPSPs (approximately 500-ms duration) in NBP cells, which were usually sensitive to GABAA but not GABAB antagonists; in some cells there remained a slow IPSP that was unaffected by GABAB antagonists. BP cells responded with excitatory or mixed excitatory + inhibitory responses. The inhibitory response had both a fast (approximately 30 ms, GABAA) and long-lasting slow phase (approximately 800 ms, mostly blocked by GABAA antagonists). In some cells there was a GABAA antagonist-insensitive slow IPSP (approximately 500 ms) that was sensitive to GABAB antagonists. Application of glutamate ionotropic receptor antagonists blocked the inhibitory response of NBP cells to primary afferent stimulation and the excitatory response of BP cells but enhanced the BP cell slow IPSP; this remaining slow IPSP was reduced by GABAB antagonists. Unit recordings in the granule cell layer and computer simulations of pyramidal cell inhibition suggested that the duration of the slow GABAA inhibition reflects the prolonged firing of GABAergic granule cell interneurons to primary afferent input. Correlation of the results with known GABAergic circuitry in the electrosensory lobe suggests that the GABAergic type 2 granule cell input to both pyramidal cell types is via GABAA receptors. The properties of the GC2 GABAA input are well suited to their putative role in gain control, regulation of phasicness, and coincidence detection. The slow GABAB IPSP evoked in BP cells is likely due to ovoid cell input to their basal dendrites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered sensory filtering and coding properties by synaptic dynamics in the electric sense

This modeling study examines the short-term synaptic plasticity properties of the electrosensory lateral lobe (ELL) afferent pathway in the weakly electric fish, Apteronotus leptorhynchus. We studied the possible functional consequences of a simple phenomenological model of synaptic depression by taking into consideration the available in vivo and in vitro results [N. Berman, L. Maler, Inhibiti...

متن کامل

The neuroethology of electrocommunication: how signal background influences sensory encoding and behaviour in Apteronotus leptorhynchus.

Weakly-electric fish are a well-established model system for neuroethological studies on communication and aggression. Sensory encoding of their electric communication signals, as well as behavioural responses to these signals, have been investigated in great detail under laboratory conditions. In the wave-type brown ghost knifefish, Apteronotus leptorhynchus, transient increases in the frequen...

متن کامل

Balanced ionotropic receptor dynamics support signal estimation via voltage-dependent membrane noise.

Encoding behaviorally relevant stimuli in a noisy background is critical for animals to survive in their natural environment. We identify core biophysical and synaptic mechanisms that permit the encoding of low-frequency signals in pyramidal neurons of the weakly electric fish Apteronotus leptorhynchus, an animal that can accurately encode even miniscule amplitude modulations of its self-genera...

متن کامل

Ionic and neuromodulatory regulation of burst discharge controls frequency tuning.

Sensory neurons encode natural stimuli by changes in firing rate or by generating specific firing patterns, such as bursts. Many neural computations rely on the fact that neurons can be tuned to specific stimulus frequencies. It is thus important to understand the mechanisms underlying frequency tuning. In the electrosensory system of the weakly electric fish, Apteronotus leptorhynchus, the pri...

متن کامل

Distribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus.

The electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus are model systems for studying mechanisms of high-frequency motor pattern generation and sensory processing. Voltage-dependent ionic currents, including low-threshold potassium currents, influence excitability of neurons in these circuits and thereby regulate motor output and sensory filtering. Alt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 80 6  شماره 

صفحات  -

تاریخ انتشار 1998